Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Effects of Zinc Pollution and Compost Amendment on the Root Microbiome of a Metal Tolerant Poplar Clone.

Identifieur interne : 000443 ( Main/Exploration ); précédent : 000442; suivant : 000444

Effects of Zinc Pollution and Compost Amendment on the Root Microbiome of a Metal Tolerant Poplar Clone.

Auteurs : Francesco Guarino [Italie] ; Giovanni Improta [Italie] ; Maria Triassi [Italie] ; Angela Cicatelli [Italie] ; Stefano Castiglione [Italie]

Source :

RBID : pubmed:32760392

Abstract

Until recently, many phytoremediation studies were focused solely on a plants ability to reclaim heavy metal (HM) polluted soil through a range of different processes, such as phytoextraction and phytostabilization. However, the interaction between plants and their own rhizosphere microbiome represents a new research frontier for phytoremediation. Our hypothesis is that rhizomicrobiome might play a key role in plant wellness and in the response to external stimuli; therefore, this study aimed to shed light the rhizomicrobiome dynamics after an organic amendment (e.g., compost) and/or HM pollution (e.g., Zn), and its relation with plant reclamation ability. To reach this goal we set up a greenhouse experiment cultivating in pot an elite black poplar clone (N12) selected in the past for its excellent ability to reclaim heavy metals. N12 saplings were grown on a soil amended with compost and/or spiked with high Zn doses. At the end of the experiment, we observed that the compost amendment strongly increased the foliar size but did not affect significantly the Zn accumulation in plant. Furthermore, the rhizomicrobiome communities (bacteria and fungi), investigated through NGS, highlighted how α diversity increased in all treatments compared to the untreated N12 saplings. Soil compost amendment, as well as Zn pollution, strongly modified the bacterial rhizomicrobiome structure. Conversely, the variation of the fungal rhizomicrobiome was only marginally affected by soil Zn addition, and only partially impaired by compost. Nevertheless, substantial alterations of the fungal community were due to both compost and Zn. Together, our experimental results revealed that organic amendment increased the bacterial resistance to external stimuli whilst, in the case of fungi, the amendment made the fungi microbiome more susceptible. Finally, the greater microbiome biodiversity does not imply, in this case, a better plant wellness or phytoremediation ability, although the microbiome plays a role in the external stimuli response supporting plant life.

DOI: 10.3389/fmicb.2020.01677
PubMed: 32760392
PubMed Central: PMC7373765


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Effects of Zinc Pollution and Compost Amendment on the Root Microbiome of a Metal Tolerant Poplar Clone.</title>
<author>
<name sortKey="Guarino, Francesco" sort="Guarino, Francesco" uniqKey="Guarino F" first="Francesco" last="Guarino">Francesco Guarino</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Chemistry and Biology "A. Zambelli", University of Salerno, Salerno, Italy.</nlm:affiliation>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Department of Chemistry and Biology "A. Zambelli", University of Salerno, Salerno</wicri:regionArea>
<wicri:noRegion>Salerno</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Improta, Giovanni" sort="Improta, Giovanni" uniqKey="Improta G" first="Giovanni" last="Improta">Giovanni Improta</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Public Health, University of Naples Federico II, Naples, Italy.</nlm:affiliation>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Department of Public Health, University of Naples Federico II, Naples</wicri:regionArea>
<wicri:noRegion>Naples</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Triassi, Maria" sort="Triassi, Maria" uniqKey="Triassi M" first="Maria" last="Triassi">Maria Triassi</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Public Health, University of Naples Federico II, Naples, Italy.</nlm:affiliation>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Department of Public Health, University of Naples Federico II, Naples</wicri:regionArea>
<wicri:noRegion>Naples</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Cicatelli, Angela" sort="Cicatelli, Angela" uniqKey="Cicatelli A" first="Angela" last="Cicatelli">Angela Cicatelli</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Chemistry and Biology "A. Zambelli", University of Salerno, Salerno, Italy.</nlm:affiliation>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Department of Chemistry and Biology "A. Zambelli", University of Salerno, Salerno</wicri:regionArea>
<wicri:noRegion>Salerno</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Castiglione, Stefano" sort="Castiglione, Stefano" uniqKey="Castiglione S" first="Stefano" last="Castiglione">Stefano Castiglione</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Chemistry and Biology "A. Zambelli", University of Salerno, Salerno, Italy.</nlm:affiliation>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Department of Chemistry and Biology "A. Zambelli", University of Salerno, Salerno</wicri:regionArea>
<wicri:noRegion>Salerno</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32760392</idno>
<idno type="pmid">32760392</idno>
<idno type="doi">10.3389/fmicb.2020.01677</idno>
<idno type="pmc">PMC7373765</idno>
<idno type="wicri:Area/Main/Corpus">000155</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000155</idno>
<idno type="wicri:Area/Main/Curation">000155</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000155</idno>
<idno type="wicri:Area/Main/Exploration">000155</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Effects of Zinc Pollution and Compost Amendment on the Root Microbiome of a Metal Tolerant Poplar Clone.</title>
<author>
<name sortKey="Guarino, Francesco" sort="Guarino, Francesco" uniqKey="Guarino F" first="Francesco" last="Guarino">Francesco Guarino</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Chemistry and Biology "A. Zambelli", University of Salerno, Salerno, Italy.</nlm:affiliation>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Department of Chemistry and Biology "A. Zambelli", University of Salerno, Salerno</wicri:regionArea>
<wicri:noRegion>Salerno</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Improta, Giovanni" sort="Improta, Giovanni" uniqKey="Improta G" first="Giovanni" last="Improta">Giovanni Improta</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Public Health, University of Naples Federico II, Naples, Italy.</nlm:affiliation>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Department of Public Health, University of Naples Federico II, Naples</wicri:regionArea>
<wicri:noRegion>Naples</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Triassi, Maria" sort="Triassi, Maria" uniqKey="Triassi M" first="Maria" last="Triassi">Maria Triassi</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Public Health, University of Naples Federico II, Naples, Italy.</nlm:affiliation>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Department of Public Health, University of Naples Federico II, Naples</wicri:regionArea>
<wicri:noRegion>Naples</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Cicatelli, Angela" sort="Cicatelli, Angela" uniqKey="Cicatelli A" first="Angela" last="Cicatelli">Angela Cicatelli</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Chemistry and Biology "A. Zambelli", University of Salerno, Salerno, Italy.</nlm:affiliation>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Department of Chemistry and Biology "A. Zambelli", University of Salerno, Salerno</wicri:regionArea>
<wicri:noRegion>Salerno</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Castiglione, Stefano" sort="Castiglione, Stefano" uniqKey="Castiglione S" first="Stefano" last="Castiglione">Stefano Castiglione</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Chemistry and Biology "A. Zambelli", University of Salerno, Salerno, Italy.</nlm:affiliation>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Department of Chemistry and Biology "A. Zambelli", University of Salerno, Salerno</wicri:regionArea>
<wicri:noRegion>Salerno</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Frontiers in microbiology</title>
<idno type="ISSN">1664-302X</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Until recently, many phytoremediation studies were focused solely on a plants ability to reclaim heavy metal (HM) polluted soil through a range of different processes, such as phytoextraction and phytostabilization. However, the interaction between plants and their own rhizosphere microbiome represents a new research frontier for phytoremediation. Our hypothesis is that rhizomicrobiome might play a key role in plant wellness and in the response to external stimuli; therefore, this study aimed to shed light the rhizomicrobiome dynamics after an organic amendment (e.g., compost) and/or HM pollution (e.g., Zn), and its relation with plant reclamation ability. To reach this goal we set up a greenhouse experiment cultivating in pot an elite black poplar clone (N12) selected in the past for its excellent ability to reclaim heavy metals. N12 saplings were grown on a soil amended with compost and/or spiked with high Zn doses. At the end of the experiment, we observed that the compost amendment strongly increased the foliar size but did not affect significantly the Zn accumulation in plant. Furthermore, the rhizomicrobiome communities (bacteria and fungi), investigated through NGS, highlighted how α diversity increased in all treatments compared to the untreated N12 saplings. Soil compost amendment, as well as Zn pollution, strongly modified the bacterial rhizomicrobiome structure. Conversely, the variation of the fungal rhizomicrobiome was only marginally affected by soil Zn addition, and only partially impaired by compost. Nevertheless, substantial alterations of the fungal community were due to both compost and Zn. Together, our experimental results revealed that organic amendment increased the bacterial resistance to external stimuli whilst, in the case of fungi, the amendment made the fungi microbiome more susceptible. Finally, the greater microbiome biodiversity does not imply, in this case, a better plant wellness or phytoremediation ability, although the microbiome plays a role in the external stimuli response supporting plant life.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">32760392</PMID>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>28</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Print">1664-302X</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>11</Volume>
<PubDate>
<Year>2020</Year>
</PubDate>
</JournalIssue>
<Title>Frontiers in microbiology</Title>
<ISOAbbreviation>Front Microbiol</ISOAbbreviation>
</Journal>
<ArticleTitle>Effects of Zinc Pollution and Compost Amendment on the Root Microbiome of a Metal Tolerant Poplar Clone.</ArticleTitle>
<Pagination>
<MedlinePgn>1677</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.3389/fmicb.2020.01677</ELocationID>
<Abstract>
<AbstractText>Until recently, many phytoremediation studies were focused solely on a plants ability to reclaim heavy metal (HM) polluted soil through a range of different processes, such as phytoextraction and phytostabilization. However, the interaction between plants and their own rhizosphere microbiome represents a new research frontier for phytoremediation. Our hypothesis is that rhizomicrobiome might play a key role in plant wellness and in the response to external stimuli; therefore, this study aimed to shed light the rhizomicrobiome dynamics after an organic amendment (e.g., compost) and/or HM pollution (e.g., Zn), and its relation with plant reclamation ability. To reach this goal we set up a greenhouse experiment cultivating in pot an elite black poplar clone (N12) selected in the past for its excellent ability to reclaim heavy metals. N12 saplings were grown on a soil amended with compost and/or spiked with high Zn doses. At the end of the experiment, we observed that the compost amendment strongly increased the foliar size but did not affect significantly the Zn accumulation in plant. Furthermore, the rhizomicrobiome communities (bacteria and fungi), investigated through NGS, highlighted how α diversity increased in all treatments compared to the untreated N12 saplings. Soil compost amendment, as well as Zn pollution, strongly modified the bacterial rhizomicrobiome structure. Conversely, the variation of the fungal rhizomicrobiome was only marginally affected by soil Zn addition, and only partially impaired by compost. Nevertheless, substantial alterations of the fungal community were due to both compost and Zn. Together, our experimental results revealed that organic amendment increased the bacterial resistance to external stimuli whilst, in the case of fungi, the amendment made the fungi microbiome more susceptible. Finally, the greater microbiome biodiversity does not imply, in this case, a better plant wellness or phytoremediation ability, although the microbiome plays a role in the external stimuli response supporting plant life.</AbstractText>
<CopyrightInformation>Copyright © 2020 Guarino, Improta, Triassi, Cicatelli and Castiglione.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Guarino</LastName>
<ForeName>Francesco</ForeName>
<Initials>F</Initials>
<AffiliationInfo>
<Affiliation>Department of Chemistry and Biology "A. Zambelli", University of Salerno, Salerno, Italy.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Improta</LastName>
<ForeName>Giovanni</ForeName>
<Initials>G</Initials>
<AffiliationInfo>
<Affiliation>Department of Public Health, University of Naples Federico II, Naples, Italy.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Triassi</LastName>
<ForeName>Maria</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Department of Public Health, University of Naples Federico II, Naples, Italy.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Cicatelli</LastName>
<ForeName>Angela</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Department of Chemistry and Biology "A. Zambelli", University of Salerno, Salerno, Italy.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Castiglione</LastName>
<ForeName>Stefano</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Department of Chemistry and Biology "A. Zambelli", University of Salerno, Salerno, Italy.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>07</Month>
<Day>15</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Front Microbiol</MedlineTA>
<NlmUniqueID>101548977</NlmUniqueID>
<ISSNLinking>1664-302X</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">NGS</Keyword>
<Keyword MajorTopicYN="N">bacteria</Keyword>
<Keyword MajorTopicYN="N">compost</Keyword>
<Keyword MajorTopicYN="N">fungi</Keyword>
<Keyword MajorTopicYN="N">metals</Keyword>
<Keyword MajorTopicYN="N">microbiome</Keyword>
<Keyword MajorTopicYN="N">phytoremediation</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2020</Year>
<Month>05</Month>
<Day>25</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>06</Month>
<Day>26</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>8</Month>
<Day>8</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>8</Month>
<Day>8</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>8</Month>
<Day>8</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32760392</ArticleId>
<ArticleId IdType="doi">10.3389/fmicb.2020.01677</ArticleId>
<ArticleId IdType="pmc">PMC7373765</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Science. 2012 Sep 28;337(6102):1661-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23019650</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Environ Manage. 2016 Mar 15;169:18-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26716572</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Microbiol. 2003 Oct;5(10):896-907</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14510843</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microb Ecol Health Dis. 2015 May 29;26:27663</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26028277</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PeerJ. 2018 Mar 7;6:e4478</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29568708</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecology. 2007 Jun;88(6):1354-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17601128</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ISME J. 2012 Sep;6(9):1640-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22418623</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Toxicol Chem. 2008 Mar;27(3):591-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17944550</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Total Environ. 2020 Apr 1;711:134433</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31818597</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Ecol. 2010 Jan;71(1):94-105</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19845764</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2019 Jun 27;9(1):9369</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31249317</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant. 2016 Jun 6;9(6):787-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27212388</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Environ Manage. 2018 Jun 15;216:41-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28427880</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gigascience. 2012 Jul 12;1(1):7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23587224</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Microbiol. 2019 Dec 10;10:2694</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31920998</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Drug Chem Toxicol. 2010 Jul;33(3):269-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20429804</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Microbiol. 2019 Jul 09;10:1506</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31338077</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2013 Apr;30(4):772-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23329690</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2016 Jul;13(7):581-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27214047</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Total Environ. 2003 May 20;307(1-3):167-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12711432</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Pollut. 2001;112(1):89-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11202657</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Rev. 2013 Sep;37(5):634-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23790204</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2019 Feb 13;9(1):1947</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30760787</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Adv. 2012 Nov-Dec;30(6):1562-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22580219</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2004 May;70(5):2966-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15128558</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2013 Jul 25;499(7459):431-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23851394</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2010 Oct;76(20):6751-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20729324</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Hazard Mater. 2016 Mar 5;304:166-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26551220</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Microbiol. 2019 Jul 16;10:1636</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31379786</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Total Environ. 2017 Apr 15;584-585:329-338</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28040210</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2019 Apr 26;10:533</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31105729</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Microbiol. 2016 May 24;7:773</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27252690</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2016 Oct 26;6:36302</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27782202</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Ecol. 2015 Jan;91(1):1-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25764529</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecotoxicol Environ Saf. 2018 Jan;147:1035-1045</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29976006</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013;8(3):e59497</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23527207</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Pollut. 2009 Jul;157(7):2108-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19285369</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Hazard Mater. 2014 Feb 15;266:141-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24394669</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 2020 Jan;39(1):3-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31346716</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Microbiol Biotechnol. 2015 Mar;99(6):2911-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25408313</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecotoxicol Environ Saf. 2018 Nov 30;164:520-529</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30149350</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chemosphere. 2009 May;75(6):781-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19187949</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Mol Biol Plants. 2013 Jan;19(1):11-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24381434</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2011 Jun 24;12(6):R60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21702898</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2013 Sep;79(17):5094-103</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23793627</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2005 Dec;71(12):8228-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16332807</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Total Environ. 2020 Apr 1;711:135067</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31818595</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Hazard Mater. 2011 Apr 15;188(1-3):98-104</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21316851</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2007;173(4):677-702</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17286818</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2016 Apr 1;32(7):1001-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26319390</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ISME J. 2015 May;9(5):1177-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25350160</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Environ Manage. 2014 Dec 15;146:94-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25163599</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>mSystems. 2018 Nov 20;3(6):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30505944</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Ecol. 2012 Oct;82(1):169-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22587649</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2015 Mar;205(4):1406-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25639293</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Microbiol. 2017 Dec 21;8:2593</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29312265</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Microbiol. 2013 Dec;21(12):641-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24139848</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>mBio. 2013 Oct 22;4(5):e00708-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24149512</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Toxicol Chem. 2013 Sep;32(9):1992-2002</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23637098</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Water Air Soil Pollut. 2017;228(9):349</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28890580</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Pollut. 2005 Feb;133(3):541-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15519729</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Waste Manag. 2008;28(2):347-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17320368</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Italie</li>
</country>
</list>
<tree>
<country name="Italie">
<noRegion>
<name sortKey="Guarino, Francesco" sort="Guarino, Francesco" uniqKey="Guarino F" first="Francesco" last="Guarino">Francesco Guarino</name>
</noRegion>
<name sortKey="Castiglione, Stefano" sort="Castiglione, Stefano" uniqKey="Castiglione S" first="Stefano" last="Castiglione">Stefano Castiglione</name>
<name sortKey="Cicatelli, Angela" sort="Cicatelli, Angela" uniqKey="Cicatelli A" first="Angela" last="Cicatelli">Angela Cicatelli</name>
<name sortKey="Improta, Giovanni" sort="Improta, Giovanni" uniqKey="Improta G" first="Giovanni" last="Improta">Giovanni Improta</name>
<name sortKey="Triassi, Maria" sort="Triassi, Maria" uniqKey="Triassi M" first="Maria" last="Triassi">Maria Triassi</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000443 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000443 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:32760392
   |texte=   Effects of Zinc Pollution and Compost Amendment on the Root Microbiome of a Metal Tolerant Poplar Clone.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:32760392" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020